Scientific publications on subway air quality

Examples of scientific published manuscripts on subway air quality (in alphabetical order):

  1. Aarnio, P., Yli-Tuomi, T., Kousa, A., Makela, T., Hirsikko, A., Hammeri, K., Raisanen, M., Hillamo, R., Koskentalo, T. & Jantunen, M. (2005). The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos. Environ., 39(28), 5059-66.
  2. Abbasi, S., Jansson, A., Sellgren, U. & Olofsson, U. (2013). Particle Emissions From Rail Traffic: A Literature Review. Crit. Rev. Env. Sci. Tec., 43, 2511-44.
  3. Adams, H.S., Nieuwenhuijsen, M.J., Colvile, R.N., McMullen, M.A.S. & Khandelwal, P. (2001). Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Sci.Total Environ., 279, 29–44.
  4. Awad, A.H.A. (2002). Environmental study in subway metro stations in Cairo, Egypt. J. Occup. Health., 44, 112–118.
  5. Bachoual, R., Boczkowski, J., Goven, D., Amara, N., Tabet, L., On, D., Leçon-Malas, V., Aubier, M. & Lanone, S. (2007). Biological effects of particles from the Paris subway system. Chem. Res. Toxicol., 20, 1426–1433.
  6. Bigert, C., Alderling, M., Svartengren, M., Plato, N., de Faire, U. & Gustavsson, P. (2008). Blood markers of inflammation and coagulation and exposure to airborne particles in employees in the Stockholm underground. Occup. Environ. Med., 65, 655–658.
  7. Birenzvige, A., Eversole, J., Seaver, M., Francesconi, S., Valdes, E. & Kulaga, H. (2003). Aerosol characteristics in a subway environment. Aerosol Sci. Technol., 37, 210–220.
  8. Bogomolova, E. & Kirtsideli, I. (2009). Airborne fungi in four stations of the St. Petersburg Underground railway system. Int. Biodeterior. Biodegradation, 63, 156–160.
  9. Braniš, M. (2006). The contribution of ambient sources to particulate pollution in spaces and trains of the Prague underground transport system. Atmos. Environ., 40(2), 348–356.
  10. Cartenì, A., Cascetta, F. & Campana, S. (2015). Underground and ground-level particulate matter concentrations in an Italian metro system. Atmos. Environ., 101, 328-337.
  11. Chan, C.C., Spengler, J.D., Özkaynak, H. & Lefkopoulou, M. (1991). Commuter exposures to VOCs in Boston, Massachusetts. J. Air Waste Manage. Assoc., 41, 1594–1600.
  12. Chan, L., Lau, W., Lee, S. & Chan, C. (2002). Commuter exposure to particulate matter in public transportation modes in Hong Kong. Atmos. Environ., 36(21), 3363–3373.
  13. Chen, Y.Y., Sung, F.C., Chen, M.L., Mao, I.F. & Lu, C.L. (2016). Indoor Air Quality in the Metro System in North Taiwan. Int. J. Environ. Res. Public Health, 13, 1200; doi:10.3390/ijerph13121200
  14. Cheng, Y.H. & Yan, J.W. (2011). Comparisons of particulate matter, CO, and CO2 levels in underground and ground-level stations in the Taipei mass rapid transit system. Atmos. Environ., 45(28), 4882–4891.
  15. Cheng, Y.H., Lin, Y.L. & Liu, C.C. (2008). Levels of PM10 and PM2.5 in Taipei Rapid Transit System. Atmos. Environ., 42, 7242–7249.
  16. Cheng, Y. H., Liu, C. C., & Lin, Y. L. (2009). Levels of ultrafine particles in the Taipei Rapid Transit System. Transportation Research Part D: Transport and Environment, 14(7), 479–486. doi:10.1016/j.trd.2009.06.002
  17. Cheng, Y.H., Liu, Z.S. & Yan, J.W. (2012). Comparisons of PM10, PM2.5, particle number, and CO2 levels inside metro trains between traveling in underground tunnels and on elevated tracks. Aerosol Air Qual. Res., 12, 879–891.
  18. Chillrud, S.N., Epstein, D., Ross, J.M., Sax, S.N., Pederson, D., Spengler, JD., et al. (2004). Elevated airborne exposures of teenagers to manganese, chromium, and steel dust and New York City’s subway system. Environ. Sci. Technol., 38, 732–7.
  19. Cho, J.H., Hee Min, K. & Paik, N.W. (2006). Temporal variation of airborne fungi concentrations and related factors in subway stations in Seoul, Korea. Int. J. Hyg. Environ. Health, 209, 249–255.
  20. Colombi, C., Angius, S., Gianelle, V. & Lazzarini, M. (2013). Particulate matter concentrations, physical characteristics and elemental composition in the Milan underground transport system. Environ., 70, 166–78.
  21. Cui, G., Zhou, L. & Dearing, J. (2016). Granulometric and magnetic properties of deposited particles in the Beijing subway and the implications for air quality management. Sci. Tot. Environ., 568, 1059-1068.
  22. Cusack, M., Talbot, N., Ondráček, J., Minguillón, M.C., Martins, V., Klouda, K., Schwarz, J. & Ždímal, V. (2015). Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro. Atmos. Environ., 118, 176–183.
  23. Eom, H.Y., Jung, H.J., Sobanska, S., Chung, S.G., Son, Y.S., Kim J.C., Sunwoo, Y. & Ro C.U. (2013). Iron Speciation of Airborne Subway Particles by the Combined Use of Energy Dispersive Electron Probe X‑ray Microanalysis and Raman Microspectrometry. Anal. Chem., 85, 10424-31.
  24. Fromme, H., Oddoy, A., Piloty, M., Krause, M. & Lahrz, T. (1998). Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train. Sci. Total Environ., 217, 165–173.
  25. Furuya, K., Kudo, Y., Okinaga, K., Yamuki, M., Takahashi, S., Araki, Y. & Hisamatsu, Y. (2001). Seasonal Variation and Their Characterization of Suspended Particulate Matter in the Air of Subway Stations. J. Trace and Micro. Tech., 19(4), 469–485.
  26. Gómez-Perales, J.E., Colvile, R.N., Fernández-Bremauntz, A.A., Gutiérrez-Avedoy, V., Páramo-Figueroa, V.H., Blanco-Jiménez, S., Bueno-López, E., Bernabé-Cabanillas, R., Mandujano, F., Hidalgo-Navarro, M. & Nieuwenhuijsen, M.J. (2007). Bus, minibus, metro inter-comparison of commuters’ exposure to air pollution in Mexico City. Atmos. Environ., 41, 890–901.
  27. Gómez-Perales, J.E., Colvile, R.N., Nieuwenhuijsen, M.J., Fernández-Bremauntz, A., Gutiérrez-Avedoy, V.J., Páramo-Figueroa, V.H., Blanco-Jiménez, S., Bueno-López, E., Mandujano, F., Bernabé-Cabanillas, R. & Ortiz-Segovia, E. (2004). Commuters’ exposure to PM2.5, CO, and benzene in public transport in the metropolitan area of Mexico City. Atmos. Environ., 38, 1219–1229.
  28. Gong; Y., Wei, Y., Cheng, J., Jiang, T., Chen, L., & Xu, B. (2017). Health risk assessment and personal exposure to Volatile Organic Compounds (VOCs) in metro carriages – A case study in Shanghai, China. Sci. Tot. Environ., 574, 1432–1438
  29. Grass, D.S., Ross, J.M., Family, F., Barbour, J., James Simpson, H., Coulibaly, D., Hernandez, J., Chen, Y., Slavkovich, V., Li, Y., Graziano, J., Santella, R.M., Brandt-Rauf, P. & Chillrud, S.N. (2010). Airborne particulate metals in the New York City subway: a pilot study to assess the potential for health impacts. Environ. Res., 110, 1–11.
  30. Guo, L., Hu, Y., Hu, Q., Lin, J., Li, C., Chen, J., Li, L. & Fu, H. (2014). Characteristics and chemical compositions of particulate matter collected at the selected metro stations of Shanghai, China. Sci. Total Environ., 496, 443–452.
  31. Gustafsson, M., Abbasi, S., Blomqvist, G., Gudmundsson, A., Janhäll, S., Johansson, C., Norman, M. & Olofsson, U. (2016). Particles in road and railroad tunnel air. Sources, properties and abatement measures. Swedish National Road and Transport Research Institute, VTI Report 917.
  32. Gustafsson, M., Blomqvist, G., Swietlicki, E., Dahl, A. & Gudmundsson, A. (2012). Inhalable railroad particles at ground level and subterranean stations – Physical and chemical properties and relation to train traffic. Transp. Res. Part D Transp. Environ., 17, 277–285.
  33. Gustavsson, P., Bigert, C. & Pollan, M. (2008). Incidence of lung cancer among subway drivers in Stockholm. Am. J. Ind. Med., 51, 545–7.
  34. Han, J., Kwon, S.B. & Chun, C. (2016). Indoor environment and passengers’ comfort in subway stations in Seoul. Building and Environment, 104, 221-231
  35. Hwang, S.H. & Park, J.B. (2014). Comparison of culturable airborne bacteria and related environmental factors at underground subway stations between 2006 and 2013. Atmos. Environ. 84, 289–293.
  36. Hwang, S.H., Yoon, C.S., Ryu, K.N., Paik, S.Y. & Cho, J.H. (2010). Assessment of airborne environmental bacteria and related factors in 25 underground railway stations in Seoul, Korea. Atmos. Environ., 44, 1658–1662.
  37. Janssen, N., Yang, A., Strak, M., Steenhof, M., Hellack, B., Gerlofs-Nijland, M., Kuhlbusch, T., Kelly, F., Harrison, R., Brunekreef, B., Hoek, G. & Cassee, F., (2014). Oxidative potential of particulate matter collected at sites with different source characteristics. Sci. Tot. Environ., 472, 572–581.
  38. Johansson, C. & Johansson, PA. (2003). Particulate matter in the underground of Stockholm. Atmos. Environ., 37, 3-9.
  39. Jung, H.J, Kim, B., Ryu, J., Maskey, S., Kim, J.C., Sohn, J., Ro & C.U. (2010). Source identification of particulate matter collected at underground subway stations in Seoul, Korea using quantitative single-particle analysis. Atmos. Environ., 44, 2287–2293.
  40. Jung, H.J., Kim, B., Malek, M., Koo, Y., Jung, J., Son, Y.S., Kim, JC., Kima, H.K. & Ro, C.U. (2012). Chemical speciation of size segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea. J. Hazard. Mater., 213-214, 331–40.
  41. Jung, M.H., Kim, H.R., Park, Y.J., Park, D.S., Chung, K.H. & Oh, S.M. (2012). Genotoxic effects and oxidative stress induced by organic extracts of particulate matter (PM10) collected from a subway tunnel in Seoul, Korea. Mutat. Res. Toxicol. Environ. Mutagen., 749, 39–47.
  42. Kam, W., Cheung, K., Daher, N. & Sioutas, C. (2011a). Particulate matter concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos. Environ., 45, 1506–16.
  43. Kam, W., Delfino, R.J., Schauer, J.J. & Sioutas, C. (2013). A comparative assessment of PM2.5 exposures in light-rail, subway, freeway, and surface street environments in Los Angeles and estimated lung cancer risk. Environ. Sci. Process. Impacts, 15, 234–243.
  44. Kam, W., Ning, Z., Shafer, M., Schauer, J. & Sioutas, C. (2011b). Chemical Characterization and Redox Potential of Coarse and Fine Particulate Matter (PM) in Underground and Ground-Level Rail Systems of the Los Angeles Metro. Environ. Sci. Technol., 45, 6769–6776.
  45. Kang, S., Hwang, H., Park, Y., Kim, H. & Ro, CU. (2008). Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis. Environ. Sci. & Technol., 42, 9051-7.
  46. Karlsson, H.L., Holgersson, A. & Möller, L. (2008). Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem. Res. Toxicol., 21, 726-31.
  47. Karlsson, H.L., Nilsson, L. & Möller, L. (2005). Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem. Res. Toxicol., 18, 19–23.
  48. Kim, B.W., Jung, H.J., Song, Y.C., Lee, M.J., Kim, H.K., Kim, J.C., Sohn, J.R. & Ro, C.U. (2010). Characterization of summertime aerosol particles collected at subway stations in Seoul, Korea using Low-Z Particle Electron Probe X-ray Microanalysis. Asian J. Atmos. Environ., 4, 97–105.
  49. Kim, C.H., Yoo, D.C., Kwon, Y.M., Han, W.S., Kim, G.S., Park, M.J., Kim, Y.S. & Choi, D. (2010). A study on characteristics of atmospheric heavy metals in subway station. Toxicol. Res., 26, 157–162.
  50. Kim, J.B., Kim, S., Lee, G.J., Bae, G.N., Cho, Y., Park, D. & Kwon, S.B. (2013). Status of PM in Seoul metropolitan subway cabins and effectiveness of subway cabin air purifier (SCAP). Clean Technologies and Environmental Policy, 16(6), 1193–1200.
  51. Kim, K.H., Ho, D.X., Jeon, J.S. & Kim, J.C. (2012). A noticeable shift in particulate matter levels after platform screen door installation in a Korean subway station. Environ., 49, 219–223.
  52. Kim, K.Y., Kim, Y.S., Roh, Y.M., Lee, C.M. & Kim, C.N. (2008). Spatial distribution of PM10 and PM2.5 in Seoul Metropolitan Subway stations. J. Hazard. Mater., 154, 440–3.
  53. Kim, M.J., Braatz, R., Kim, J.T. & Yoo, C.K. (2015). Indoor air quality control for improving passenger health in subway platforms using an outdoor air quality dependent ventilation system. Building and Environment, 92, 407-417.
  54. Kim, Y., Kim, M., Lim, J., Kim, JT. & Yoo, C. (2010). Predictive monitoring and diagnosis of periodic air pollution in a subway station. J. Hazard. Mat., 183(1-3), 448–59.
  55. Klepczyńska-Nyström, A., Larsson, B.-M., Grunewald, J., Pousette, C., Lundin, A., Eklund, A. & Svartengren, M. (2012). Health effects of a subway environment in mild asthmatic volunteers. Respiratory Medicine, 106(1), 25–33.
  56. Kwon, S.B., Jeong, W., Park, D., Kim, K.T. & Cho, K.H. (2015). A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations, Korea. J. Hazard. Mater., 297, 295–303.
  57. Kwon, S.B., Namgung, H.G., Jeong, W., Park, D. & Eom, J.K. (2016). Transient variation of aerosol size distribution in an underground subway station. Environ. Monit. Assess., 188, 362 DOI 10.1007/s10661-016-5373-5.
  58. Lee, K.R., Kim, W.G., Woo, S.H., Kim, J.B., Bae, G.N., Park, H.K., Yoon, H.H. & Yook, S.J. (2016). Investigation of airflow and particle behaviour around a subway train running in the underground tunnel. Aerosol Sci. and Technol., 50:7, 669-678.
  59. Levy, J.I., Dumyahn, T. & Spengler, J.D.,(2002). Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts. J. Expo. Anal. Environ. Epidemiol., 12, 104–114.
  60. Loxham, M., Cooper, M.J., Gerlofs-Nijland, M.E., Cassee, F., Davies, D.E., Palmer, M.R. & Teagle, D.A.H. (2013). Physicochemical Characterization of Airborne Particulate Matter at a Mainline Underground Railway Station. Environ. Sci. Technol., 47, 3614−22.
  61. Lu, S., Liu, D., Zhang, W., Liu, P., Fei, Y., Gu, Y., Wu, M., Yu, S., Yonemochi, S., Wang, X., Wang, Q. (2015). Physico-chemical characterization of PM2.5 in the microenvironment of Shanghai subway. Res., 153, 543–552.
  62. Ma, C., Matuyama, S., Sera, K., & Kim, S. (2012). Physicochemical Properties of Indoor Particulate Matter Collected on Subway Platforms in Japan. Asian J. Atmos. Environ., 6, 73–82.
  63. Martins, V., Minguillón, M.C., Moreno, T., Querol, X., de Miguel, E., Capdevila, M., Centelles, S. & Lazaridis, M. (2015b). Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. J. of Aerosol Sci., 90, 103–113.
  64. Martins, V., Moreno, T., Mendes, L., Eleftheriadis, K., Diapouli, E., Alves, C., Duarte, M., De Miguel, E., Capdevila, M., Querol, X. & Minguillón, MC. (2016b). Factors controlling air quality in different European subway systems. Environ. Res., 146, 35–46.
  65. Martins, V., Moreno, T., Minguillón, M.C., van Drooge, B.L., Reche, C., Amato, F., de Miguel, E., Capdevila, M., Centelles, S. & Querol, X. (2016a). Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain. Environ. Pol., 208, 125–136.
  66. Martins, V., Moreno, T., Minguillón, MC., Amato, F., De Miguel, E., Capdevila, M. & Querol, X. (2015a). Exposure to airborne particulate matter in the subway system. Sci. Tot. Environ., 511, 711–722.
  67. Matamoros, V., Bayona, J.M., 2006. Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ. Sci. Technol., 40, 5811–5816.
  68. Midander, K., Elihn, K., Wallén, A., Belova, L., Borg Karlsson, A. & Wallinder, I. (2012). Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach. Sci. Tot. Environ., 427, 390–400.
  69. Moreno, T., Kelly, F., Dunster, C., Oliete, A., Martins, V., Minguillon, MC., Amato, F., Capdebila, M., de Miguel, E. & Querol, X. (2017a). Oxidative potential of subway PM2.5. Atmos. Environ., 148, 230-238.
  70. Moreno, T., Martins, V., Querol, X., Jones, T., BéruBé, K., Minguillón, MC., Amato, F., Capdevila, M., de Miguel, E., Centelles, S., Gibbons, W. (2015b). A new look at inhalable metalliferous airborne particles on rail subway platforms. Sci. Tot. Environ., 505, 367–375.
  71. Moreno, T., Pérez, N., Reche, C., Martins, V., de Miguel, E., Capdevila, M., Centelles, S., Minguillón, M.C., Amato, F., Alastuey, A., Querol, X. & Gibbons, W. (2014). Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ., 92, 461-8.
  72. Moreno, T., Reche, C., Minguillón, M.C., Capdevila, M., de Miguel, E., & Querol, X. (2017b). The effect of ventilation protocols on subway system air quality. Sci. Tot. Environ., in press.
  73. Moreno, T., Reche, C., Rivas, I., Minguillón, MC., Martins, V., Vargas, C., Buonano, G., Parga, J., Pandolfi, M., Brines, M., Ealo, M., Fonseca, AM., Amato, F., Sosa, G., Capdevila, M., de Miguel, E., Querol, X. & Gibbons, W. (2015a). Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environ. Res., 142, 495–510.
  74. Múgica-Alvarez, V., Figueroa-Lara, J., Romero-Romo, M., Sepúlveda-Sánchez, J. & López-Moreno, T. (2012). Concentrations and properties of airborne particles in the Mexico City subway system. Atmos. Environ., 49, 284-93.
  75. Murruni, L.G., Solanes, V., Debray, M., Kreiner, A.J., Davidson, J., Davidson, M., Vázquez, M. & Ozafrán, M. (2009). Concentrations and elemental composition of particulate matter in the Buenos Aires underground system. Environ., 43, 4577–4583.
  76. Namgung, H.G., Kim, J.B., Kim, M.S., Kim, M., Park, S., Woo, S.H., Bae, G.N., Park, D. & Kwon, S.B. (2017). Size distribution analysis of airborne wear particles released by subway brake system. Wear, 372-373, 169–176
  77. Nieuwenhuijsen, MJ., Gómez-Perales, E. & Colvile, RN. (2007). Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems. Atmos. Environ., 41, 7995-8006.
  78. Onat, B. & Stakeeva, B. (2013). Personal exposure of commuters in public transport to PM2.5 and fine particle counts. Atmos. Pol. Res., 4, 329–335.
  79. Park, D. & Ha, K. (2008). Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platform of subway train in Seoul, Korea. Environ Int, 34, 629–34.
  80. Park, D., Lee, T., Hwang, D., Jung, W., Lee, Y., Cho, K., Kim, D. & Lee, K. (2014). Identification of the sources of PM10 in a subway tunnel using positive matrix factorization. J. Air Waste Manage. Assoc., 64, 1361–1368.
  81. Park, D., Oh, M., Yoon, Y., Park, E. & Lee, K. (2012). Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization. Environ., 49, 180–185.
  82. Perrino, C., Marcovecchio, F., Tofful, L. & Canepari, S. (2015). Particulate matter concentration and chemical composition in the metro system of Rome, Italy. Environ. Sci. Pollut. Res., 22, 9204–9214.
  83. Querol, X., Moreno, T., Karanasiou, A., Reche, C., Alastuey, A., Viana, M., Capdevila, M. & de Miguel, E. (2012). Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys., 12(11), 5055–5076.
  84. Raut, J.C., Chazette, P. & Fortain, A. (2009). Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris. Atmos. Environ., 43, 860-8.
  85. Reche, C., Moreno, T., Amato, F., Viana, M., van Drooge, B.L., Chuang, H.-C., Bérubé, K., Jones, T., Alastuey, A. & Querol, X. (2012). A multidisciplinary approach to characterise exposure risk and toxicological effects of PM10 and PM2.5 samples in urban environments. Ecotoxicol. Environ. Saf., 78, 327–35.
  86. Ripanucci, G., Grana, M., Vicentini, L., Magrini, A. & Bergamaschi, A. (2006). Dust in the Underground Railway Tunnels of an Italian Town. J. Occup. Environ. Hygiene., 3(1), 16–25.
  87. Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R. & Simoneit, B.R.T. (1993). Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol., 27, 636–651.
  88. Şahin, Ü.A., Onat, B., Stakeeva, B., Ceran, T. & Karim, P. (2012). PM10 concentrations and the size distribution of Cu and Fe-containing particles in Istanbul’s subway system. Transp. Res. Part D Transp. Environ., 17, 48–53.
  89. Salma, I. (2009). Air pollution in underground railway systems, in: Air Quality in Urban Environments. Edited by R.E. Hester and R.M. Harrison.Royal Society of Chemistry, pp. 65–84.
  90. Salma, I., Posfai, M., Kovacs, K., Kuzmann, E., Homonnay, Z. & Posta, J. (2009). Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station. Atmos. Environ., 43, 3460–6.
  91. Salma, I., Weidinger, T. & Maenhaut, W. (2007). Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos. Environ., 41, 8391-405.
  92. Schauer, J., Rogge, W., Hildemann, L., Mazurek, M., Cass, G. & Simoneit, B. (2007). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ., 41, 241–259.
  93. Seaton, A., Cherrie, J., Dennekamp, M., Donaldson, K., Hurley, J.F. & Tran, C.L. (2005). The London Underground: dust and hazards to health. Occup. Environ. Medicine, 62(6), 355–62.
  94. Silva, C.B.P., Saldiva, P. H. N., Amato-Lourenço, L. F., Rodrigues-Silva, F. & Miraglia, S. G. (2012). Evaluation of the air quality benefits of the subway system in São Paulo, Brazil. J. Environ. Manag., 101, 191–6.
  95. Sioutas, C. (2011). Physical and chemical characterization of personal exposure to airborne particulate matter (PM) in the Los Angeles subways and light-rail trains METRANS final report. http://www.metrans.org/sites/default/files/research-project/10-07_Sioutas_final_0_0.pdf
  96. Son, Y., Dinh, T., Chung, S., Lee, J. & Kim, J. (2014a). Removal of particulate matter emitted from a subway tunnel using magnetic filters. Environ. Sci. Technol., 48, 2870−2876.
  97. Son, Y., Jeon, J.S., Lee, H.J., Ryu, I.C. & Kim, J.C. (2014b). Installation of platform screen doors and their impact on indoor air quality: Seoul subway trains. J. Air and Waste Manag. Assoc., 64, 1054-1061.
  98. Spagnolo, AM., Ottria, G., Perdelli, F. & Cristina, ML. (2015). Chemical characterisation of the coarse and fine PM in the environment of an underground railway system: cytotoxic effects and oxidative stress-a preliminary study. Int. J. Environ. Res. Public Health, 12(4), 4031-46.
  99. Steenhof, M., Gosens, I., Strak, M., Godri, K.J., Hoek, G., Cassee, F.R., Mudway, I.S., Kelly, F.J., Harrison, R.M., Lebret, E., Brunekreef, B., Janssen, N.A.H. & Pieters, R.H.H. (2011). In vitro toxicity of particulate matter collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential – the RAPTES project. Fibre Toxicol., 8, 1–15.
  100. Suárez, L., Mesías, S., Iglesias, V., Silva, C., Cácers, D.D. & Ruiz-Rudolph, P. (2014). Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile. Environ. Sci: Processes & Impacts, 16, 1309-1317
  101. Sundh, J., Olofsson, U., Olander, L. & Jansson, A. (2009). Wear rate testing in relation to airborne particles generated in a wheel – rail contact. Lubr. Sci., 21, 135–150.
  102. Sysalova, J. & Szakova, J. (2006). Mobility assessment and validation of toxic elements in tunnel dust samples—Subway and road using sequential chemical extraction and ICP-OES/GF AAS measurements. Environ. Res., 101, 287–293.
  103. Trattner, R. B., Perna, A. J., Kimmel, H. S. & Birch R. (1975). Respirable dust content of subway air. Environ. Letters, 10(3), 247–252.
  104. Triadó-Margarit, X., Veillette, M., Duchaine, C., Talbot, M., Amato, F., Minguillón, M. C., Martins, V., de Miguel, E., Casamayor, E. O. & Moreno, T. (2016). Bioaerosols in the Barcelona subway system. Indoor Air. doi: 10.1111/ina.12343
  105. Tsai, DH., Wu, YH., & Chan, CC. (2008). Comparisons of commuter’s exposure to particulate matters while using different transportation modes. Sci. Tot. Environ., 405(1-3), 71–77.
  106. van Drooge, B.L., Fontal, M., Bravo, N., Fernández, P., Fernández, M.A., Muñoz-Arnanz, J., Jiménez, B. & Grimalt, J.O. (2014). Seasonal and spatial variation of organic tracers for biomass burning in PM1 aerosols from highly insulated urban areas. Environ. Sci. Pollut. Res., 21, 11661-11670.
  107. Vasconcellos, E. A. (2001). Urban transport, environment and equity: the case for developing countries. London: Earthscan.
  108. Wang, B.Q., Liu, J.F., Ren, Z.H. & Chen, R.H. (2016). Concentrations, properties, and health risk of PM2.5 in the Tianjin City subway system. Environ. Sci. Pollut. Res., 23, 22647–22657
  109. Wang, J., Zhao, L., Zhu, D., Gao, H.O., Xie, Y., Li, H., Xu, X., & Wang, H. (2016). Characteristics of particulate matter (PM) concentrations influenced by piston wind and train door opening in the Shanghai subway system. Transportation Research Part D, 47, 77–88
  110. Wang, X.R. & Gao, H.O. (2011). Exposure to fine particle mass and number concentrations in urban transportation environments of New York City. Transp. Res. Part D Transp. Environ., 16, 384–391.
  111. Xu, B., Yu, X., Gu, H., Miao, B., Wang, M. & Huang, H. (2016). Commuters’ exposure to PM2.5 and CO2 in metro carriages of Shanghai metro system. Transportation Research Part D, 47, 162–170.
  112. Zhang, W., Jiang, H., Dong, C., Yan, Q., Yu, L. & Yu, Y. (2011). Magnetic and geochemical characterization of iron pollution in subway dusts in Shanghai, China. Geochem. Geophys. Geosystems, 12. doi:10.1029/2011GC003524.
  113. Zhang, Y., Li, C., Wang, X., Guo, H., Feng, Y. & Chen, J. (2012). Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China. J. Environ. Sci. 24, 131–141.
  114. Zheng, H.L., Deng, W.J., Cheng, Y. & Guo, W. (2017). Characteristics of PM2.5, CO2 and particle-number concentration in mass transit railway carriages in Hong Kong. Environ. Geochem. Health, DOI 10.1007/s10653-016-9844-y.
  115. Zimmer, A.T. & Maynard, A.D. (2002). Investigation of the aerosols produced by a high-speed, hand-held grinder using various substrates. Ann. Occup. Hyg. 46, 663–672.